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ABSTRACT: Using a 30-year record of biological and water chemistry data
collected from seven lakes near smelters in Sudbury (Ontario, Canada) we
examined the link between reductions of Cu, Ni, and Zn concentrations and
zooplankton species richness. The toxicity of the metal mixtures was assessed
using an additive Toxic Unit (TU) approach. Four TU models were
developed based on total metal concentrations (TM-TU); free ion
concentrations (FI-TU); acute LCSOs calculated from the Biotic Ligand
Model (BLM-TU); and chronic LC50s (acute LCSOs adjusted by metal-
specific acute-to-chronic ratios, cBLM-TU). All models significantly correlated
reductions in metal concentrations to increased zooplankton species richness
over time (p < 0.01) with a rank based on 7* values of cBLM-TU > BLM-TU
= FI-TU > TM-TU. Lake-wise comparisons within each model showed that
the BLM-TU and ¢cBLM-TU models provided the best description of recovery
across all seven lakes. These two models were used to calculate thresholds for
chemical and biological recovery using data from reference lakes in the same region. A threshold value of TU = 1 derived from
the cBLM-TU provided the most accurate description of recovery. Overall, BLM-based TU models that integrate site-specific
water chemistry-derived estimates of toxicity offer a useful predictor of biological recovery.

Species Richness

= (Toxic Units)

1.0. INTRODUCTION exposure medium. One approach of combining metals is
Over 7000 lakes around Sudbury (Ontario, Canada) were concentration or exposure additivity (as opposed to response
affected by acidification and increased metal concentrations addition) to produce a single linear variable, the “Toxic Unit”
from historic industrial emissions." As a result, many became (TU®). The TU approach normalizes the exposure concen-
inhospitable for aquatic life; however, subsequent emission tration for each contaminant by expressing it as a proportion of
controls improved water quality and many plant, invertebrate, a toxicity end point and then these are summed to estimate

and fish species have returned. Zooplankton community
changes in lakes with increasing pH and decreasing metal
concentrations have been previously discussed.>™ Metals,
particularly Cu** and Ni**, have been implicated as potential
factors limiting the recovery of zooplankton diversity to levels
typically found in reference lakes but consideration has been on
an individual metal basis.>> Although metal speciation (i.e., free

toxicity on a proportional basis. Of the summation methods
(additivity, antagonism, and synergism) additivity is generally
used in the absence of data to demonstrate synergistic or
antagonistic effects.” In this study we varied both the exposure
concentration (numerator of each TU proportion) and the
toxicity end point (TU denominator) to provide different

jon concentrations) has been considered, the combined estimates of metal mixture impacts for contaminated lakes over
toxicity of metal mixtures has yet to be investigated. time.
There are few studies linking the effects of metal mixtures to
toxic impacts. Borgmann and colleaguesé’7 established a Received: September 7, 2011
bioaccumulation modeling approach with Hyalella azteca but Revised:  December 15, 2011
this requires knowledge of burden-to-effect relationships and Accepted: December 21, 2011
has not been developed for metal concentrations in the Published: December 21, 2011
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The recent development of physiologically based toxicity
prediction models such as the biotic ligand model (BLM) may
allow for new approaches to understand the recovery of metal-
impacted lakes. The BLM is a geochemical equilibrium based
model that builds on the free ion activity model (FIAM'®) by
quantifying the bioaccumulation of bioavailable forms of metal
at the site of toxicity (the biotic ligand'""?). The acute toxicity
of metals generally results from the free metal ion'® but other
forms (species) in solution, for example Cu(OH),, can also be
associated with impacts and are accounted for in the BLM
approach.'”” Complexation of metal cations by negatively
charged ligands in the exposure medium, competition for
uptake to the biotic ligand between metal ions and other
cations (e.g, Na*, H*, Ca**, and Mg**), and estimates of metal
uptake itself are provided by conditional equilibrium con-
stants."> Thresholds for accumulation on the biotic ligand are
associated with acute lethality (LCS0 or ECS50) and as a result
the BLM provides water chemistry specific estimates of metal
toxicity. The BLM approach has been demonstrated as a robust
method for understanding the acute impact of metals in aquatic
systems and models for Cu, Ni, Ag, Zn, and Cd have recently
been published (see review 14).

In the present study four different TU models were used to
estimate metal-mixture impacts on zooplankton species rich-
ness in the Sudbury lakes after the pH was no longer a limiting
factor (i.e, pH > 6, see Section 2.2). These models were based
on total metal concentrations (TM-TU); free ion concen-
trations (FI-TU); BLM predicted acute LC50s (BLM-TU);
which were in turn adjusted by metal-specific acute-to-chronic
ratios to produce a chronic BLM model (¢cBLM-TU). Each of
the models represents an increased level of complexity with
respect to estimating the potentially toxic fraction of metals.
While the total metal concentrations in the exposure medium
(TM-TU) are often used to gauge toxicity, it does not account
for the bioavailable portion of metal that is associated with
toxicity, the free ion.'">'® A FI-TU model should provide
improved estimates of toxic metal concentrations because it
accounts for complexation reactions, and the BLM-based TU
models may further improve estimates by integrating the
toxicity mitigation influences of complexation and competition.

BLM modeling outputs are generally coupled with stressor
variables such acute lethality'” or whole body metal burdens.'®
Ecological effects are often expressed as community-level
variables, such as species richness, diversity, or abundance,
which better represent the overall health of an ecosystem." In
this study we develop TU modeling approaches to estimate the
recovery of crustacean zooplankton species richness following
water quality improvements in smelter-impacted lakes. Species
richness was selected over total community abundance as the
more sensitive metric for zooplankton community damage and

320,21
recovery.

2.0. METHODS

2.1. Background to Contamination in Sudbury Lakes.
Lakes near metal smelters in Sudbury, Ontario, Canada, were
impacted by both acidification and increased trace metal
concentrations." Six of our study lakes are located within 30 km
of smelters and were severely affected by acidity (pH near 4)
and exhibited very high concentrations of trace metals, in
particular Cu and Ni' (Table S1). In this study we focused on
Cu, Ni, and Zn. Although other trace metals had been
measured in the Sudbury lakes they were either of negligible
concentration after pH had risen above 6 (Cd and Pb, Section
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2.2) or do not have a BLM currently available (Al). Between
1960 and the mid 1990s atmospheric SO, and metal emissions
from the smelters were reduced by over 90% resulting in
reduced acidity and metal inputs in impacted lakes."*?
Additionally, small-scale experimental,”*** and then large-
scale liming programs™ led to improved water quality in
some lakes. These improved conditions permitted the return of
many plant, invertebrate, and fish species to the previously
inhospitable waters. Detailed descriptions of the impacts and
subsequent partial recovery can be found in Keller et al.>*%*’
and Yan et al>~*

2.2. Data Set Handling. A 30-year monitoring program of
lakes affected by the Sudbury smelters provided water
chemistry and biotic data for this study. From this extensive
record seven of the most studied lakes were selected and only
those years where lake pH > 6, which has been described as a
barrier to biological recovery”®*® (see Supporting Information
for full account of data selection), were used. The final data set
consisted of 92 individual data-points from the Sudbury Lakes
as follows: Clearwater (n = 9 years of data, 1998—2006), Joe (n
= 7, 1985—2006), Hannah (n = 23, 1976—2003), Lohi (n = 11,
1975—76 and then 1995—2003), Middle (n = 24, 1975—2003),
Nelson (n = 8, 1985—2006), and Whitepine (n = 10, 1997—
2006). Hannah Lake and Middle Lake, and Clearwater Lake
and Lohi Lake are connected, but none of the other lakes share
a common watershed. The data set offered gradients of water
chemistry variables both over time and across lakes (Table S1).
A data set of water chemistry and zooplankton species richness
from 23 unimpacted reference lakes from northeastern Ontario
was used to generate recovery targets for the contaminated
lakes.?

2.3. Toxic Unit Modeling. In applying the TU approach to
derive an annual estimate of the combined impact of Ni, Cu,
and Zn in each lake, the ratios of the waterborne exposure
concentrations to the effect threshold concentration for each
metal were summed.”® Four different combinations of exposure
and effect ratios were calculated according to eq 1, i.e., based on
total metal concentrations, free ion concentrations, acute BLM-
derived LC50s, and chronic BLM-derived LCS50s (see detailed
explanations of the four models in the Supporting Informa-
tion). Exposure-to-effect ratios were summed to calculate the
overall TU assuming additivity (i.e., individual metals do not
interact toxicologically nor influence bioavailability and uptake).
Thus additivity assumes different binding sites on the biological
membrane for each metal.” This assumption is reasonable given
our understanding of the differences in uptake pathways for Cu
(via Na* channels®®), Zn** (as an analog of Ca*"*') and Ni**
(Mg transport mechanism®>).

[CuEx]ij [NiEx]ij
[Cuggly  [Niggl;

(Zng, J;
[Zngg J;

TUl] =

(1)
where TUj; is the summed toxic unit for metals Cu, Ni, and Zn
for each lake i (i = 1 to 7) for each year j. For the TU model
based on total metal, free ion, Biotic Ligand Model, and chronic
BLM (cBLM-TU), numerators (exposure concentrations (Ex))
were total metal concentrations for TM-TU, free ion
concentrations for FI-TU, and dissolved metal concentrations
for both BLM-TU and c¢BLM-TU models. Denominators
(effect concentrations or toxicity end points (Eff)) for each
model were as follows: water hardness-based U.S. EPA Water
Quality Criteria (WQC, criterion continuous concentration)
concentrations (for TM-TU), free ion environmental no effect
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Figure 1. Comparisons of scattergrams of zooplankton species richness vs Toxic Unit scores for the four compared models: (A) Total Metal TU
(TM-TU), (B) Free Ion TU (FI-TU); (C) BLM-TU, and (D) ¢cBLM-TU. Data on both axes are Log, transformed, and the displayed Pearson’s r
coefficients, all of which are significant at P = 0.01 (n = 92), were calculated on logged data. Lines show the best fit linear regression with 95%

confidence interval.

values (ENEVs for FI-TU>*), BLM estimates of acute toxicity
(LCSO0s for BLM-TU'***), and BLM estimates of chronic
toxicity (acute LCSOs to which acute to chronic ratios were
applied for cBLM-TU>**%). It is worth noting that ENEVs and
WQC are chronic criteria and the latter incorporates ACRs (for
details see Supporting Information).

2.4. Model Comparison and Analysis. Toxic Unit model
outputs and zooplankton species richness were Log), trans-
formed to allow for the analysis of linear relationships. A two-
level analysis was undertaken to determine, first, how well each
model described the relationship between mixture toxicity and
zooplankton species richness in the Sudbury lakes, and second,
whether this relationship was representative of all 7 lakes. In the
first step, the TU output from each model was correlated to
zooplankton species richness (Pearson’s correlation). This
analysis provided an r? value and a slope (the overall slope) that
described each model’s fit to the zooplankton species richness
irrespective of lake or time (i.e., all 92 data-points). However,
there is potential for an overestimation of the fit of a model
when a data set is composed of nested subsets,” as is the case
of individual lakes nested within Sudbury lakes data set. Thus
the second step of analysis for each model involved regressing
zooplankton species richness to TUs on an individual lake basis,
producing individual lake slopes, and comparing these to the
overall slope. Assuming that the overall fit of the model was
reflective of the fit of each individual lake, the slope of each
individual lake would be expected to align to the overall slope.
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We adopted a descriptive approach to express the individual
lake slopes as deviations from the overall slope (see ref 40).
The variance (S?) of the individual lake to the overall slope was
calculated as the sum of squared error per lake divided by the
number of observations in the individual lake data subset.
2.5. Estimating Chemical and Biological Recovery in
Metal-Impacted Lakes. The two TU models that offered the
best fit to the Sudbury lakes data (the BLM-TU and cBLM-
TU) were used to model the reference lake data (described in
Section 2.3 and Supporting Information). BLM-TU and cBLM-
TU outputs were calculated for these reference lakes to
estimate potential recovery limits from metal toxicity. Recovery
limits were used to deduce whether zooplankton species
richness in the Sudbury lakes, following water improvements,
was comparable to the number of zooplankton species in the
reference lakes. Under the assumption that species richness in
reference lakes was typical of unimpacted sites, a zooplankton
recovery threshold was calculated at two standard deviations
below the mean species richness. This accounts for natural
variability that occurs in reference conditions, and lakes with
higher species richness values are considered as recovered. The
recovery threshold was applied to each of the Sudbury lakes to
determine the state of biological recovery in relation to
predicted TU values. Yan et al.® used a similar approach for
zooplankton metrics from nonacidified reference lakes to
establish whether the zooplankton community in acidified
experimental lakes had recovered. The ability of the TU model
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Figure 2. Slope variation in each Toxic Unit model: (A) Total Metal TU (TM-TU); (B) Free Ion TU (FI-TU); (C) BLM-TU, and (D) cBLM-TU\.
For each model the TU is correlated against the species richness (on a Logl0 scale). The overall slope is shown with 95% confidence limits of all
data-points (n = 92, gray lines) and is compared to the mean of the individual lake slopes (WP = Whitepine, JOE = Joe, NEL = Nelson, HAN =
Hannah, CLE = Clearwater, MID = Middle, LOHI = Lohi, black lines).

to estimate recovery was evaluated by setting the toxicity
threshold at TU = 1 (corresponding to acute toxicity for BLM-
TU and chronic end points for cBLM-TU). For comparative
purposes we also derived an upper TU limit for reference data,
calculated at two standard deviations above the mean TU value
for reference lakes.

3.0. RESULTS

3.1. Comparison of TU Models with Data Pooled
Across Lakes. The four models significantly correlated
decreasing TU to increasing zooplankton species richness (p
< 0.01 Pearson’s correlation, Figure 1). However, the strength
of the correlations differed, ranging from the TM-TU model (r*
= 0.619) to the cBLM-TU (#* = 0.712), with intermediate
values of 0.69 for both the FI-TU and BLM-TU models. Using
overall correlation as a measure of how well each model
described the increase in zooplankton species richness, the
models ranked as follows: ¢cBLM-TU > BLM-TU = FI-TU >
TM-TU. While the sum of TUs was correlated with species
richness for all four models, the relative contributions of Cu, Ni,
and Zn varied considerably (Table S2). The BLM-TU model
tended to predict that Cu was most likely the main
contaminant while the FI-TU model generally assigned a
much lower proportion of the TUs to Cu, with its proportion
replaced mainly by Zn (data not shown).
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3.2. Comparison of TU Models between Lakes. The
TU models based on the BLMs (BLM-TU and cBLM-TU,
Figure 2C and D) were more consistent across lakes than the
TM-TU and FI-TU models (Figure 2A and B). Both TM-TU
and FI-TU models produced predictions with larger variation
between individual slopes of each lake and the overall slope
across lakes (Figure 2 and Figure S1) and this is supported by
the calculated S* values (Table 1). In comparison, both the
BLM-TU and the cBLM-TU models exhibited lower variability
between individual lakes and across all lakes (Table 1). In all

Table 1. Comparison of the Model Diagnostics for the Toxic
Unit Models Used to Predict Zooplankton Species
Richness”

overall model fit lake-wise model fit

model R? slope p-value  mean slope SD s?
TM-TU 0.619 —-0.44 <0.01 —0.27 0.89 0.83
FI-TU 0.690 -0.26 <0.01 —0.47 0.37 0.19
BLM-TU 0.690 —0.31 <0.01 —-0.22 0.23 0.06
cBLM-TU 0.712 —0.28 <0.01 —0.34 0.35 0.12

“For each model the overall model parameters (1 = 92) are given as r*
value, slope, and p-value (Pearson’s correlation). The mean slope
calculated from the slope of each individual lake (n = 7) with standard
deviation is shown for each model. The individual lake slope to overall
slope deviation is described as variance (S2).
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Figure 3. Zooplankton species richness plotted against (A) BLM-TU and (B) ¢BLM-TU for the 7 Sudbury lakes and reference lakes. On each figure,
geochemical recovery end points are fixed at TU = 1 (0 on the Logl0 scale, vertical dotted line) or derived from the from the reference data set (2
SD above the mean TU, vertical dashed line). In the latter scenario the upper TU limit for geochemical recovery occurs at TU = —0.6 and TU =
—0.4 (on a Logl0 scale) when derived using the BLM-TU and cBLM-TU models, respectively. A recovery threshold for species richness (2 S D
below the mean species richness, horizontal dashed line) is positioned at 0.95 (equivalent to 9 species). Upper TU limits based on 2 SD from the
mean of the reference lakes are most stringent, but using a fixed threshold (TU = 1) derived from the BLM-TU (A) classifies many more lakes (and
years) as chemically recovered although species richness is lower compared to reference lakes. The most accurate indicator of recovery is TU = 1
derived from the ¢cBLM-TU model as only Whitepine Lake, which has similar TU and richness values to the reference data, is considered to be
recovered. The two solid lines show the mean species richness for reference lakes (horizontal) and the overall best fit line for the seven study lakes.

model estimates, Whitepine Lake stood out as contributing
significantly to the variation in slopes among lakes (Figure 2).
Based on their consistency among lakes in describing the
relationship of species richness to TUs, the four models were
ranked BLM-TU > cBLM-TU > FI-TU >TM-TU (from least
to most variation).

Although the application of ACRs to the BLM-TU did
increase the overall fit (cBLM-TU * = 0.712 compared to
BLM-TU #* = 0.69; Figure 1D and C), individual lake slope to
overall slope variation increased (Figure 2, Figure S1). These
differences between BLM-TU and ¢BLM-TU demonstrate the
influence of the high ACR value for Ni (19.4) relative to that of
Cu (2.07) and Zn (2.21). This increased the relative
contribution of Ni to the ¢cBLM-TU values while reducing
that of both Cu and Zn (see shift in range of contributions to
toxicity between BLM-TU and ¢cBLM-TU in Table S2).

3.3. Estimates of Chemical and Biological Recovery.
The BLM-TU and c¢BLM-TU models provided good
correlations between mixture toxicity and zooplankton species
richness in Sudbury lakes, and were subsequently used to
model the reference lakes data set (Figure 3). Species richness
in the reference lakes did not correlate to toxic units (e.g.,
BLM-TU r* = 0.02, p = 0.90) as metal concentrations were not
expected to be toxic in these lakes. A zooplankton species
richness of 9 (0.95 on a Log, scale) was determined as a lower
recovery threshold (i.e., 2 standard deviations below the mean
species richness of reference lakes). This species richness value
was applied to Sudbury Lakes, and only Whitepine Lake and
Nelson Lake (for the majority of years) had 9 or above
zooplankton species, therefore these two lakes could be
considered as biologically recovered (with regards to species
richness).

In terms of the ability of the BLM based toxicity prediction
models to estimate species recovery, both a fixed TU value of 1
and the upper TU limit derived from reference lakes were
examined. The upper TU limits were calculated as TU = 0.25
(—0.6 on Log10 scale) and 0.4 (—0.4) for BLM-TU and cBLM-
TU models, respectively (Figure 3). When the threshold for
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chemical recovery was fixed at TU = 1 (0 on a Log,, scale, i.e.,
bioavailable metal concentrations equal the LCS0) derived
using the BLM-TU model, the water quality in Whitepine and
Nelson lakes would be sufficiently recovered for species
richness to be comparable to the reference lakes (Figure 3A).
The later years of Joe, Hannah, and Middle lakes were also
calculated as TU < 1 but actual species richness was below the
species richness threshold for recovery (i.e., water chemistry-
based TU models predicted chemical recovery, but measured
species richness was not comparable to the reference lakes,
Figure 3A). This fixed threshold of TU = 1 derived from the
BLM-TU model appears to overpredict biological recovery.
When the same TU = 1 value was applied to data in the cBLM-
TU model, the fixed threshold was closer to the threshold
based on the 2 SD from the mean of the reference data (Figure
3B). Using the ¢cBLM-TU model and applying the fixed
threshold (i.e, TU = 1) appears to be the most accurate
estimate of geochemical recovery and agreed with measured
biological recovery. Sudbury lakes data-points that are classed
as having a water quality similar to the reference lakes also have
a similar number of zooplankton species present. As with the
upper limit based on 2 SD from the mean of the reference lakes
data, the TU =1 threshold applied to the cBLM-TU model
identified only Whitepine Lake as recovered and therefore is a
conservative estimate of species recovery.

4.0. DISCUSSION

In modeling the effects of Cu, Ni, and Zn concentrations on the
recovery of zooplankton in lakes surrounding Sudbury smelters
we compared four additive TU models. Each model successfully
correlated declining mixture toxicity to increasing species
richness. This demonstrates the usefulness of these models in
predicting environmental impact, as calculated metal mixture
toxicity using a toxic unit approach reasonably predicted real
world community responses. Of the four TU models tested,
there was an increasing correlation to zooplankton species
richness with increasing estimates of metal bioavailability:
¢BLM-TU > BLM-TU > FI-TU > TM-TU. The ranking of the
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models demonstrates a progression in the mechanistic
understanding of the toxicity of inorganic forms of dissolved
metal. The TM-TU offers no consideration of the bioavailabilty
of dissolved metal species as it is based on total metal
thresholds for toxicity as influenced by ambient water hardness.
BLM-based TU models provided the best correlations which is
consistent with our expectation that free ion based models are
more accurate than those that use total metal and, in turn,
models that incorporate cation competition at the site of
biological uptake in addition to complexation reactions are
more accurate still. Although pH was specifically removed as a
stressor from our analysis (i.e., selecting only years in which pH
> 6), the influence of pH on Cu, Nji, and Zn availability would
also have been incorporated into the models that accounted for
speciation.

The strength of the BLM approach is that it is
mechanistically based, accounting for threshold accumulations
at the site of toxicity. It accounts for the geochemical species
associated with toxicity which include Cu®* and Cu(OH),,"?
Ni2*,*' and Zn*".'> Therefore both of the BLM-TU models
account for speciation and complexation reactions in solution
as well as cationic competition at the site of toxicity. BLM-
based predictions for individual metals offer improvements over
hardness-based methods for deriving acute water quality criteria
and guidelines and are gaining acceptance within the regulatory
community.***”** Here we provide evidence that BLM models
can also be used to predict biological responses at the
community level for mixtures of metals.

Despite the success of using the BLM approach to predict
the recovery of zooplankton species richness, it is likely that
further improvements to this approach might be realized by
calibrating model parameters to meet site-specific needs. These
might include soft water specific models, biotic ligand
characteristics that are appropriate for zooplankton residing
in these lakes (rather than the generalized D. magna model),
and true chronic BLMs with experimentally derived stability
constants. The waters of the Canadian Shield can be very soft
(<3 mg/L Ca43) and Ca concentrations are subject to ongoing
decline.** At very low Ca concentrations, the assumptions of
the acute BLM (developed for moderately hard water) will
likely not be accurate® as the bioavailability and toxicity of
divalent metals ions are greater owing to reduced competition
from cations.*"*

Our BLM-based TU models were based on the existing D.
magna models, which used stability constants derived from the
original fish gill BLM model,"? adjusted to reflect the relative
sensitivity of the new species.'” D. magna BLMs based on fish
gill stability constants have been shown to lack predictive
accuracy in some cases.*® Furthermore, as D. magna is not
present the Sudbury lakes, the most accurate model would be
derived from zooplankton that are, or at least one zooplankton
species that represents zooplankton sensitivities in the Sudbury
lakes. D. magna is more tolerant than smaller zooplankton
species (e.g, Daphnia mendotae and Chydorus sphaericus) to
pollutants as smaller species are susceptible to greater uptake as
a function of greater surface area to size ratio.”*® A model
based on D. magna metal sensitivity would be expected to
underestimate toxicity when extrapolated to more sensitive
zooplankton.

By applying ACRs to the acute BLM-derived LCS0s, we
reduced the LCS50s which increased the overall correlation to
zooplankton species richness, but appeared to weaken the
within-lake relationships (Figures 2 and S1, Table 1). The
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application of ACRs increased the contribution of Ni relative to
Cu by virtue of the high Ni ACR, but the performance of our
¢BLM-TU model may have been increased if the LCS0 was
derived from chronic BLMs rather than acute LCS0s adjusted
with ACRs. D. magna chronic BLMs are now available for Cu,¥
7Zn,% and Ni! Although using the chronic Zn BLM would
have been feasible, the Cu and Ni models were unsuitable for
our cBLM TU model. The chronic Zn BLM is mechanistically
similar to the acute model, although stability constants have
been altered to account for long-term exposure,*® but the
chronic Cu model requires the consideration of CuCOj; uptake
and toxicity, a species which is not incorporated in the acute Cu
BLM. The Ni model®’ is even more problematic as the
nonlinear effect of H* (pH) could only be expressed when
superimposed onto the effects of Ca and Mg. Therefore, we
chose to apply ACRs to acute BLM estimates of lethality which
is consistent with current U.S. EPA water quality criteria
guidelines. However, further refinement of the ¢cBLM TU
model by incorporating LC50s derived from chronic BLMs
would certainly warrant more consideration.

By recalibrating the existing acute BLM-TU model as
described we would expect greater accuracy in correlating
mixture toxicity to community metrics. However, interpretation
of the correlation is key to understanding the underlying
processes within each lake. Our analysis suggested that the
overall correlation (slope) between calculated TU and
zooplankton species richness did not fully explain the
descriptive (and predictive) powers of each model. Within
the data set were seven lakes in which the processes of chemical
and biological recovery differed, but lakes sharing similar
characteristics can be grouped. Hannah, Middle, and Lohi are
the closest lakes to the Sudbury smelters and as such were most
severely affected. Artificial neutralization in the mid 1970s™*
reduced trace metal concentrations dramatically.>> Within our
data set (pH > 6), Hannah, Middle, and Lohi lakes show the
greatest reduction of TU (x-axis) and increase in zooplankton
richness (y-axis), i.e., steepest correlation slopes. Although,
Nelson Lake was also limed, metal levels were lower (relative to
Hannah, Middle, and Lohi) because it is further from the
emission source, and the pH of the lake never fell below S. Joe
and Whitepine lakes also had relatively low trace metal
concentrations and therefore TU values did not change as
dramatically over time (Figure 2). Two groups of lakes provide
the primary reason for the overall slope to individual lake slope
variation observed among the TU models. The BLM-TU and
cBLM-TU align more to the influence of Hannah, Middle, and
Lohi lakes, and overpredict the rise in species richness in
Whitepine, Nelson, and Joe lakes. Models that align well to
Whitepine, Nelson, and Joe lakes (e.g., FI-TU model), under-
predict the changes that happened over a greater range of TUs.

Taking Middle lake as an example of the neutralized lakes,
following the addition of base, pH 6 was reached within a few
years. Although phytoplankton community composition
recovered fairly quickly,** zooplankton species richness did
not increase. The only Daphnia species to re-establish a
population was the acid-sensitive species Daphnia mendotae.*®
While other zooplankton species re-established (e.g., cope-
pods), other Daphnid species failed to persist despite new
colonists arriving. In contrast, Whitepine Lake recovered
naturally, but started with the lowest metal concentrations
and the most diverse zooplankton community, with at least
eight species present in all sampling years. As acidity and metal
levels decreased, new colonists arrived (e.g, Eubosmina
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longispina) and/or relict populations increased in size (e.g,
Epischura Zacustrisz). In effect, at the start of our data set,
Whitepine Lake was more similar to the reference lakes than to
the contaminated lakes, and it is not surprising that Whitepine
Lake was predominantly classed as chemically and biologically
recovered (Figure 3). It appears that individual lake recovery
trajectories (correlations of TU to species richness) depend on
the initial severity of damage and the timing since chemical
recovery, as well as the current condition.>* As Whitepine, Joe,
and Nelson lakes were not as severely damaged as Hannah,
Middle, and Lohi lakes, and correspondingly had a more
species-rich starting point, they show less dramatic changes in
richness. After all, they did not have as far to go.

BLM-based TU models best explained the relationship
between species richness and mixture toxicity. In the final step
in our modeling and analysis we included reference lake data to
determine if the chemical recovery end points in the impacted
Sudbury lakes, as predicted by the TU models, equated to
actual biological recovery. The upper TU limits, derived from
the reference data set, were determined for both BLM-TU and
cBLM-TU models as 0.25 and 0.4 TU, respectively (Figure 3).
These limits under-predicted the extent of biological recovery
in the Sudbury lakes, in particular during the most recent years
of our data set. When recovery thresholds were fixed at TU = 1,
where the effect concentration is equal to the BLM-derived
bioavailable metal concentration, lakes and years that were
predicted to be geo-chemically recovered were also similar to
the reference lakes in species richness. This was especially true
in the case of the cBLM-TU model. Furthermore, in the case of
the BLM-TU there is a degree of discrepancy between the
reference data set-derived upper limit and the fixed TU = 1
threshold. However, with the cBLM-TU these two values are
closer to unity, suggesting that through the application of
ACRs, the acute BLM can be calibrated to in situ monitoring
data, such as our univariate community metric, species richness.

Although the reduction of Cu, Ni, and Zn concentrations was
correlated to increases in zooplankton species richness in all of
our models (once pH had risen above 6), there are numerous
other factors that influence the re-establishment of zooplankton
communities in the Sudbury lakes. The process of biological
recovery in contaminated lakes is far more complex than the
simple removal of the metal stressors. Assuming there has been
adequate time for recovery, factors such as propagule arrival
rates and size, differing establishment probabilities of the
propagules, predation, and/or inadequate habitat are all likely
to affect the success of new colonists.>*”**** These factors can
be divided into two categories: (a) chemical, physical, and
biological factors related to habitat quality (local factors), and
(b) factors relatin§ to the dispersion of would-be colonists
(regional factors).” As the lakes used in our analysis are
geographically close and among numerous other lakes,
propagule delivery rates were unlikely to limit recovery.

In this study we have demonstrated that dissolved metal
concentrations can explain a large proportion of the trends in
zooplankton community richness once the threat of acidity
itself is removed. TU models that included the BLM provided
better predictions of species richness most likely because they
consider the integrated effects of water chemistry on
bioavailability. Models could be further improved by accounting
for site- and local species-specific parameters, as well as by
moving from ACR to mechanistically based chronic models.
Nonetheless summarizing physiological-relevant water chem-
istry into a single linear variable by combining the BLM and the
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Toxic Unit approaches holds real promise to predict both
damage and recovery where the aquatic environment is affected
by mixtures of metals, but not other stressors.
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