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REVIEW

Recovery of acidified Sudbury, Ontario, Canada, lakes:
a multi-decade synthesis and update
W. (Bill) Keller, Jocelyne Heneberry, and Brie A. Edwards

Abstract: The Sudbury region of northeastern Ontario, Canada, provides one of the world’s best examples of the resilience of aquatic
ecosystems after reductions in atmospheric contaminant deposition. Thousands of lakes around the Sudbury metal smelters were
badly damaged by acid deposition. Lakes closest to the smelters were also contaminated by metal particulates. However, large
reductions in atmospheric SO2 and metal emissions starting in the early 1970s have led to widespread chemical improvements in these
lakes, and recovery has been observed for various aquatic biota. Studies of Sudbury-area lakes are advancing our understanding of
chemical and biological lake recovery; however, recovery is a complicated process and much remains to be learned. Biological
recovery has often been slow to follow chemical recovery, and it has become apparent that the recovery of lakes from acidification is
closely linked to interactions with other large-scale environmental stressors like climate change and Ca declines. Thus, in our
multiple-stressor world, recovery may not bring individual lakes back to their exact former state. However, with time, substantial
natural biological recovery toward typical lake communities can be reasonably expected for most but not necessarily all biota. For
organisms with limited dispersal ability, particularly fish, human assistance may be necessary to re-establish typical communities. In
lakes where food webs have been severely altered, re-establishment of typical diverse fish communities may in fact be an important
element aiding the recovery of other important components of aquatic ecosystems including zooplankton and benthic macroinver-
tebrates. In the lakes closest to the smelters, where historically watersheds as well as lakes were severely damaged, the recovery of
aquatic systems will be closely linked to ongoing terrestrial recovery and rehabilitation, particularly through the benefits of increased
inputs of terrestrially derived organic matter. The dramatic lake recovery observed in the Sudbury area points to a brighter future for
these lakes. However, continued monitoring will be needed to determine future changes and help guide the management and
protection of Sudbury-area lakes in this multiple-stressor age.

Key words: acidification, lakes, biota, recovery, Sudbury.

Résumé : La région de Sudbury au nord-est de l’Ontario, Canada, fournit un des meilleurs exemples au monde de la résistance des
écosystèmes aquatiques à la suite de réductions de dépôt de contaminants atmosphériques. Des milliers de lacs autour des fonderies
de Sudbury ont été sérieusement endommagés par le dépôt d’acides. Les lacs les plus proches des fonderies ont aussi été contaminés
par des matières particulaires métalliques. Cependant, les grandes réductions des émissions de SO2 et métalliques atmosphériques
ayant commencé au début des années 1970 ont donné lieu à d’importantes améliorations chimiques dans ces lacs et la récupération
a été observée au niveau de divers biotes aquatiques. Les études au sujet des lacs de la région de Sudbury font progresser notre
compréhension de la récupération chimique et biologique des lacs; cependant, la récupération est un processus complexe et il nous
reste beaucoup à apprendre. La récupération biologique a souvent tardé à suivre la récupération chimique et il est devenu apparent
que la récupération des lacs à la suite des effets d'acidification soit étroitement liée aux interactions avec d'autres facteurs agressifs
agissant à grande échelle comme le changement climatique et les baisses de Ca. Ainsi, en ce monde de facteurs agressifs multiples, la
récupération ne peut pas rétablir exactement les lacs individuellement à leur ancien état. Cependant, avec le temps, on peut
raisonnablement s'attendre à une importante récupération biologique naturelle rétablissant les communautés de lac typiques pour la
plupart, mais pas nécessairement tout le biote. Pour les organismes avec un pouvoir de dispersion limité, particulièrement les
poissons, l'intervention humaine peut être nécessaire afin de rétablir les communautés typiques. Dans les lacs où les réseaux
alimentaires ont été sévèrement changés, le rétablissement de communautés typiques composées de différents poissons peut en fait
être un élément important aidant à la récupération d'autres composants importants d'écosystèmes aquatiques y compris le zooplanc-
ton et les macroinvertébrés benthiques. Dans les lacs plus près des fonderies, où historiquement les lignes de partage des eaux aussi
bien que les lacs ont été sévèrement endommagées, la récupération des systèmes aquatiques sera étroitement liée au rétablissement
et à la remise en état terrestre en cours, particulièrement par les avantages des apports accrus de matière organique issue de la terre.
La dramatique récupération des lacs observée dans la région de Sudbury présage un avenir plus brillant pour ces lacs. Cependant, la
surveillance continue sera nécessaire afin de déterminer les changements futurs et pour aider à guider la gestion de la protection de
lacs de la région de Sudbury en cette ère de facteurs agressifs multiples. [Traduit par la Rédaction]

Mots-clés : acidification, lacs, biote, récupération, Sudbury.
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Introduction
The mining and smelting of metals in the Sudbury, Ontario, Can-

ada, area began in the late 1800s (Winterhalder 1995a), and over time
the Sudbury smelters became one of the world’s largest sources of
sulphur dioxide (SO2) emissions, releasing �2500 kilotonnes per
year in the 1960s. As well, the smelters emitted large quantities of
metal (particularly Ni and Cu) particulates. The acidification of
surface waters in northeastern Ontario near the Sudbury, On-
tario, metal-smelting complex was first identified in the 1960s
(Gorham and Gordon 1960; OWRC 1970) and by the mid-1970s it
was known that lake acidification extended for a considerable
distance from the Sudbury smelters (Beamish and Harvey 1972;
Beamish 1974; Conroy et al. 1974, 1976; Beamish et al. 1975; Conroy
and Keller 1976). By the mid-1970s, aquatic science programmes,
largely led by the Ontario Ministry of the Environment (now the
Ontario Ministry of Environment, Conservation and Parks), were
in place to assess the extent and nature of aquatic acidification
damage in northeastern Ontario (Conroy et al. 1976; Dillon et al.
1979); these programmes expanded during the 1980s.

Based on large-scale chemistry surveys conducted in the 1980s,
it was estimated that over 7000 lakes in a 17 000 km2 area had
been acidified to pH <6.0 by the Sudbury smelter emissions (Neary
et al. 1990). In the lakes closest to Sudbury, severe metal contam-
ination (especially Cu and Ni) of lake waters (Conroy et al. 1976,
1978) and sediments (Semkin and Kramer 1976) had accompanied
acidification. As studies progressed, it became apparent that wide-
spread acidification damage had occurred to many biological
components of aquatic ecosystems including fish (Keller 1978;
Matuszek et al. 1992), benthic invertebrates (Conroy et al. 1976;
Roff and Kwiatkowski 1977; Stephenson and Mackie 1986), zoo-
plankton (Sprules 1975, 1977; Roff and Kwiatkowski 1977; Yan and
Strus 1980; Keller and Pitblado 1984; Yan and Geiling 1985;
Yan et al. 1988; MacIsaac et al. 1987), benthic filamentous algae
(Keller et al. 1980; Vandermeulen et al. 1993), and phytoplankton
(Conroy et al. 1976; Kwiatkowski and Roff 1976; Yan and Stokes
1978; Yan 1979; Nicholls et al. 1992). This biological damage, at
various aquatic trophic levels, included the loss of acid-sensitive
species and reduced community richness. However, along with
the documentation of large-scale aquatic damage came the real-
ization that lakes were already showing increases in pH and re-
ductions in Cu and Ni concentrations in the 1980s (Hutchinson
and Havas 1986; Keller and Pitblado 1986) in response to large
reductions in SO2 and metal emissions at the Sudbury smelters in
the early 1970s as well as declines in overall North American sul-
phur emissions. The focus of aquatic studies in the Sudbury area
began to change from damage assessment to investigating pat-
terns of chemical and biological recovery. Additional emission
reduction programmes in the late 1970s and early 1990s, along
with the earlier cuts, achieved >90% reductions from previous
peak levels of SO2 (see for example fig. 2 in Keller 2009) and metal
emissions, gave reason for guarded optimism for the future of
northeastern Ontario lakes. Expectations for ecosystem recovery
were positive; however, the actual knowledge of chemical and
biological recovery processes was limited, and ongoing study was
essential to track and understand long-term recovery patterns.
Although much has been learned, many uncertainties remain.

This paper summarizes findings from Sudbury-area lake studies
over the last four and a half decades. We document the current
understanding of chemical and biological lake recovery in the
Sudbury area. We also describe some of the complexities of assess-
ing recovery in light of the known interactions with other impor-
tant stressors, such as climate change and Ca declines.

Sudbury lakes
There is no “typical” Sudbury lake (Keller 1992). Lakes affected

by the Sudbury smelter emissions fall along a continuum, from
very remote, dilute, oligotrophic systems in highly acid-sensitive

terrain distant from Sudbury to urban lakes close to the smelters
and subjected to urban stressors such as nutrient and road salt
inputs as well as atmospheric metal and acid deposition. This
diversity of Sudbury lakes greatly amplifies the broad, interna-
tional value of the Sudbury lake-monitoring programmes. Rela-
tively pristine lakes distant from the smelters are similar to the
dilute, acid-sensitive lakes that have typically been affected by
long-range acid deposition in other areas of North America and
Europe (Garmo et al. 2014) offering valuable comparisons for
other regions. Because of these similarities, Norwegian scientists
visited some of these lakes in the 1990s to develop and test meth-
ods of assessing lake recovery in anticipation of impending bene-
fits from European sulphur emission controls (Gunn and Sandøy
2003). The more urbanized Sudbury lakes offer opportunities to
better understand the aquatic effects of interacting multiple stres-
sors in heavily developed landscapes (Gunn and Keller 1995; Valois
et al. 2011). The lakes closest to the Subury smelters that were
historically highly acidic and metal-contaminated offer valuable
comparisons to other lake regions directly affected by metal
smelters in other areas of Canada (Alpay et al. 2006; Jeziorski et al.
2013), the world (Moiseenko 1994), and lakes affected by other
industrial sources of acid and metal contamination (Manca et al.
2016).

The long-term Sudbury lake-monitoring programmes have been
conducted at two temporal scales. “Intensive” monitoring lakes
were sampled for water chemistry and plankton at least monthly
during the ice-free season. Regular sampling on some lakes
started as early as 1973. In fact, one of the key Intensive monitor-
ing lakes, Clearwater, has the longest continuous monitoring re-
cord of any acid lake in the world, to our knowledge. Additional
Intensive lakes were added to the programme during the 1980s
and 1990s to better cover the range of lake types affected by the
Sudbury emissions. A few of the Intensive lakes (Fig. 1) were ex-
perimentally limed in the 1970s (Lohi, Middle, Hannah) or the
1990s (Whirligig, Little Whitepine). “Extensive” monitoring lakes
were sampled only once per summer, primarily for water chem-
istry with periodic plankton sampling. The focus of the Extensive
programme was to document the spatial extent of effects on
Sudbury-area lakes, and determine temporal changes on a broad
scale. The initial Extensive survey was conducted on 209 lakes
during 1974–1976 (Conroy et al. 1978). During 1981–1983 these
lakes were again sampled (Pitblado and Keller 1984) and addi-
tional lakes were surveyed (n = 250). Since 1981, a subset of acidic
lakes, including the 42 lakes considered here, has been sampled
annually (Table 1; Fig. 1). The analyses of long-term chemistry
patterns presented here (Fig. 2) are based on the Extensive moni-
toring lakes (time series for pH, SO4, Ca, and dissolved organic
carbon (DOC) are presented in Figures A1 to A4 of Appendix A);
however, changes in many of the Intensive monitoring lakes and
other Sudbury-area lakes are described and discussed in the text.

Chemical and physical changes with recovery

Acidity and sulphate
Since the initial documentation of damage, there has been dra-

matic chemical recovery of acidified lakes near Sudbury, resulting
from smelter emission reductions (e.g., Dillon et al. 1986; Hutchinson
and Havas 1986; Keller and Pitblado 1986; Keller et al. 1986, 1992a,
1999a, 1999b, 2001a; Woodfine and Havas 1995). Changes included
the expected declines in acidity and SO4 concentrations (Figs. 2a, 2b).
Although there are still many acidified lakes around Sudbury and
elsewhere in Ontario (Jeffries et al. 2003), changes in the acidity of
Sudbury lakes have been dramatic (Fig. 2a).

Changes in lake pH (and other chemical parameters discussed
in subsequent sections) over the monitoring record were exam-
ined using linear mixed-effect models (LMM). Models were fit us-
ing the lme4 package (version 3.4.4, Bates et al. 2017) in the
R statistical environment (R 3.1.3, https://www.r-project.org/), and
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Fig. 1. Locations of key Sudbury-area lakes monitored by the Ontario Ministry of the Environment, Conservation and Parks. “Extensive”
monitoring lakes are sampled once annually, in summer, for chemistry and in some years for zooplankton. “Intensive” monitoring lakes are
sampled at least monthly during the ice-free season for chemistry, phytoplankton, zooplankton, and oxygen and thermal structure. Long-
term chemistry trend data presented in this paper are primarily from the Extensive monitoring lakes; however, chemical and biological
changes in various Intensive monitoring lakes are described in the text.

Keller et al. 3
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the structure of each LMM was identical for all parameters: with
change over time (monitoring years 1–35) as a random effect and
grouped by lake. The significance of lake-specific changes was
assessed by deriving the 95% confidence intervals of their lake
specific slope parameters. Additional details are provided in Fig. 2.
Of the 42 Extensive monitoring lakes considered here, all had
overall pH increases since 1981. In 1981, all these lakes had
pH < 6.0 a level below which toxicity occurs to sensitive aquatic
biota (Keller et al. 1990a; Havens et al. 1993; Holt and Yan 2003)
and 26 (62%) had pH < 5.0. By 2015, none of the lakes had pH < 5.0
and 24 (57%) had pH > 6.0.

Surprisingly, some of the most dramatic declines in acidity have
been observed in severely damaged urban lakes close to the Sud-
bury smelters, such as Clearwater and Crooked lakes (Figs. 1, 2a).
The rapid recovery of such sulphur and metal-rich lakes is likely
related to alkalinity generation from microbial reduction of the
abundant sulphur and metals (White et al. 1997). Such alkalinity
generation in urban lakes may be enhanced by nutrient inputs
from shoreline development (Keller et al. 1999c); however, dra-
matic declines in acidity have also been observed in undeveloped
lakes (e.g., Daisy Lake, Fig. 1). The Sudbury-area lakes that have

shown the least increases in pH include headwater lakes located
on weathering-resistant, soil-poor, quartzite ridges up to �50 km
southwest and �110 km north of Sudbury, such as Nellie and
Sunnywater lakes, respectively (Figs. 1, 2a). In addition to being
located in highly acid-sensitive terrain, these deep lakes with com-
paratively small watersheds have water retention times of several
decades. Thus, a slow response to reductions in sulphur deposi-
tion is not surprising given the important influence of flushing
time on lake response (Arnott et al. 2003; Larssen et al. 2003).

While water quality issues continue, the spatial extent of the
Sudbury influence on lakes is now only a fraction of what it was in
the past. All Sudbury-area Extensive monitoring lakes have shown
declines in SO4 concentrations since 1981 (Fig. 2b). In the mid-
1970s elevated lakewater SO4 concentrations (>10 mg L−1) were
detectable to �140 km from Sudbury (Conroy et al. 1978). Such
elevated SO4 concentrations now only occur in a few lakes very
close (<10 km) to the Sudbury smelters (Fig. 3a), although concen-
trations over 5 mg L−1 extend to �50 km, and lakewater SO4 con-
centrations out to �90 km from Sudbury still sometimes slightly
exceed concentrations in lakes 250 km to the southeast, near
Dorset, Ontario (Yan et al. 2008a), that reflect regional back-
ground levels as affected by long range atmospheric transport
(Fig. 3a).

Metals
Although lake water metal (Cu, Ni) concentrations have also

declined greatly in Sudbury-area lakes, residual metal contamina-
tion in water and sediments persists in the lakes closest to Sud-
bury, and will likely continue for many years (Nriagu et al. 1998;
Keller et al. 1999a). Some of the lakes close to Sudbury are also
affected by urban stresses such as road salting and nutrient inputs
from shoreline development (Gunn and Keller 1995; Pearson et al.
2002; Tropea et al. 2011), affecting metal toxicity and complicating
patterns of recovery (Celis-Salgado et al. 2016). In the 1970s, metal
(Ni, Cu) concentrations in lake waters exceeding 30 �g L−1 for Ni
and 25 �g L−1 for Cu were detected to �40 and 80 km, respectively,
from Sudbury (Conroy et al. 1976). As of 2015, elevated concentra-
tions of these metals, exceeding Ontario Guidelines (MOEE 1994)
for surface waters (Ni 25 �g L−1, Cu 5 �g L−1), were restricted to
lakes within �20 km of Sudbury. However, slightly elevated Ni
and Cu concentrations are still detectable in some lakes up to
�50 km from Sudbury (Figs. 3b, 3c), a legacy of past widespread
metal deposition on the landscape.

In contrast to Cu and Ni, concentrations of total Al (Fig. 3d) do
not show a relationship to distance from the smelters, since acid-
leaching of soils and increased lake acidity, not direct atmo-
spheric deposition, were the major factors causing elevated Al
concentrations (Keller et al. 2003) in acidified lakes. Although Al
concentrations have greatly declined through time, they are still
(2015) highly correlated with pH (rs – 0.78, p < 0.05). The Extensive
monitoring lakes with the highest recent Al concentrations (140 –
258 �g L−1) all still have pH < 5.6.

Calcium
Unexpectedly, large declines in Ca concentrations (Fig. 2c) were

also observed in Sudbury lakes as acidity decreased (Keller et al.
2001b), a pattern that was soon after documented broadly in Pre-
cambrian Shield lakes across central and northern Ontario
(Jeziorski et al. 2008; Edwards et al. 2009). Ca concentrations in
many formerly acidified lakes near Sudbury are now much lower
than diatom-inferred background conditions determined from
paleolimnological analyses of sediment cores (Keller et al. 2001b,
2003). Declines in lake water Ca concentrations averaging 55%
(49%–67%) have occurred in all Extensive monitoring lakes since
annual sampling commenced in 1981 (Fig. 2c). Declines in Ca (1981
vs. 2015) were significantly correlated (rs = 0.84, p < 0.05) with
declines in SO4. Considering charge balances (�eq L−1) the declines
in Ca on average balance 46% of the declines in SO4 (27%–72% in

Table 1. List of abbreviations for the
extensive monitoring lakes shown in
Fig. 2 and Appendix A.

Name Abbreviation

Annie Annie
Aurora Whitepine Aur. Wh.
Bell Bell
Bluesucker Blues.
Bob Bob
Chiniguchi Chini.
Clearwater Clearw.
Crooked Crook.
David David
Donald Don.
Dougherty Dough.
Florence Flor.
Fraleck Fral.
Frederick Fred.
George George
Gullrock Gullr.
Jim Edwards J.Ed.
Johnnie John.
Killarney Kill.
Klock Klock
Landers Land.
Laundrie Laund.
Mahzenazing Mahz.
Marjorie Marj.
Matagamasi Matag.
Nellie Nell.
O.S.A. O.S.A.
Pilgrim Pilgr.
Reef Reef
Ruth Roy Ru.Ro.
Sans Chambre Sa.Ch.
Seagram Seagr.
Silvester Silvest.
Sunnywater Sunnyw.
Telfer Telf.
Tillie Till.
Tilton Tilt.
Tyson Tyson
Wabun Wabun
Wavy Wavy
White Oak Wh.Oak
Wolf Wolf

4 Environ. Rev. Vol. 27, 2019
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individual lakes). Almost all (40) of the 42 Sudbury-area Extensive
monitoring lakes considered here (Fig. 1) now have Ca < 2 mg L−1

(Fig. 2c), and most (33) of these lakes now have Ca concentrations
below 1.5 mg L−1, an approximate threshold for damage to the
most sensitive Daphnia species and chronic stress in native cray-
fish in Precambrian Shield lakes (Ashforth and Yan 2008; Jeziorski
et al. 2008; Cairns and Yan 2009; Edwards et al. 2015). However, the
effect of Ca declines on aquatic species is a complex issue, involv-
ing differing species sensitivities, lethal and sub-lethal toxicity,

and altered predatory interactions (Cairns and Yan 2009; Riessen
et al. 2012; Azan and Arnott 2017; Jeziorski and Smol 2017). The
only two Extensive monitoring lakes with Ca still above 2 mg L−1

are urban lakes (Clearwater, Tilton; Fig. 1). Ca concentrations in
these lakes may have been affected by urban influences such as
local watershed development and dust control applications of
CaCl2 to gravel roads.

Declining Ca concentrations are already having effects on lake
zooplankton communities in Ontario (Jeziorski et al. 2014) induc-

Fig. 2. Linear mixed-effect model slopes describing the observed temporal trends over the period 1981–2015 for pH (a), SO4 (b), Ca (c), and DOC
(d) for 42 Extensive monitoring lakes shown in Fig. 1. Slopes are presented in rank order and display the 95% confidence interval for each lake.
Lake-specific slope was calculated as the conditional mean random effect slope, and standard error for each lake was calculated as the
standard error of the conditional mean of each random effect slope. The 95% CI was then calculated as the mean slope ±1.96 times its
standard error. Slopes were deemed significant if their 95% CI did not overlap zero. CIs for SO4 are too narrow to show at this scale. All lakes
had increases in pH and decreases in SO4 and Ca over this period. All but five lakes had increases in DOC.
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ing a shift from Ca-rich daphnids to Ca-poor Holopedium and are
likely also affecting other biota. Because of its moderating role on
the sensitivity of biota to other stressors like acidity, metals, UV-B
irradiance, and temperature (Skeffington and Brown 1992; Hessen
and Alstad Rukke 2000; Ashforth and Yan 2008), declines in Ca
concentrations are of major concern (Jeziorski and Smol 2017) and
need to be closely monitored (Keller 2009). Based on estimated
weathering rates, further declines in the Ca concentrations of
northern Ontario lakes are likely (Watmough and Aherne 2008).

Dissolved organic carbon
Similar to observations in many areas of Europe and North Amer-

ica (Garmo et al. 2014), dissolved organic carbon (DOC) concentra-
tions have increased in many Ontario lakes (Keller et al. 2008; Yan
et al. 2008b) including those around Sudbury (Fig. 2d). Such “brown-

ing” can have dramatic ecological effects (Williamson et al. 2015).
Although changes in atmospheric deposition chemistry after sul-
phur emission reductions explain much of the widely observed DOC
increase in surface waters in many areas of the world (Monteith et al.
2007), recent DOC increases in Ontario lakes, including lakes near
Sudbury, also appear to be related to a warming climate (Keller et al.
2008). Dramatic increases in lake DOC have generally accompanied
recovery from acidification (Dixit et al. 2001; Keller et al. 2003, 2005);
however, DOC increases have also been observed in northeastern
Ontario lakes that never acidified (Keller 2007), pointing to changes
in soil solution chemistry rather than in-lake processes as a domi-
nant factor affecting lake DOC.

Increased UV-B penetration resulting from acidification-related
DOC declines likely contributed to the biological damage ob-
served in very clear, low DOC lakes (Yan et al. 1996a; Keller et al.
2003; Persaud and Yan 2003). DOC increases in recovering lakes
have substantially reduced DOC-inferred UV-B penetration (Dixit
et al. 2001). Since 1981, DOC has increased in all but the five clear-
est (DOC < 1.5 mg L−1) Extensive monitoring lakes (Sunnywater,
Nellie, Ruth Roy, OSA, Marjorie; Fig. 2d). Considering the overall
DOC changes between 1981 and 2015, summer lake waters now
contain 1.2–326 (average 51) tonnes more DOC (n = 38, lake volume
not available for 4 lakes) than they did several decades ago. Tem-
poral changes (1981 vs. 2015) in DOC concentrations were signifi-
cantly correlated with changes in SO4 (rs = –0.60, p < 0.05), again
suggesting that declines in sulphur deposition were a major factor
affecting DOC increases. Ontario lakes are generally not at great
risk of damage by UV-B irradiance (Molot et al. 2004), although
some very clear Sudbury-area lakes may be exceptions. However,
in 2015, only six of the 42 Extensive monitoring lakes had
DOC < 2 mg L−1, a level below which UV attenuation is greatly
reduced (Williamson et al. 1996).

In the relatively small (<500 ha) lakes that cover the northern
Ontario landscape, lake clarity or DOC has a dominant influence
on determining lake thermal structure (Snucins and Gunn 2000)
including the amount of cold-water habitat (Keller et al. 2005) and
epilimnion thickness (Keller et al. 2006). Even with a generally
warming climate, the amount of cold-water habitat in some
Sudbury-area lakes has been observed to increase with increased
DOC (Keller et al. 2005; Tanentzap et al. 2008).

Complexing by organic compounds is an important factor mod-
erating the toxicity of metals, especially copper (Park et al. 2009;
Cloran et al. 2010; Cuss et al. 2010; Taylor et al. 2016a) to aquatic
organisms. Thus, it is likely that DOC increases are helping reduce
metal toxicity in Sudbury-area lakes and that such benefits will
increase as terrestrial systems recover further, rebuilding organic
soils and contributing increased organic matter inputs to lakes.

Total phosphorus and nitrate
Only six of the Extensive monitoring lakes showed any evidence

of temporal changes in total phosphorus (TP) concentrations
based on analyses of slopes over the 1981–2015 period. This con-
clusion is not surprising perhaps, since shoreline development is
not heavy on any of the Extensive lakes and most have none,
although many lakes in south-central Ontario have declined in TP
even with increases in human activity (Eimers et al. 2009) from
causes that are not clear. More heavily urbanized lakes in Sudbury
have shown evidence of cultural eutrophication based on compar-
isons with background conditions estimated by hindcasts from
watershed TP models (Gunn and Keller 1995) and inferred from
paleolimnological analyses of diatoms in sediment cores (Tropea
et al. 2011). Lake and watershed characteristics do not point to any
obvious explanation for the apparent decreases (Sans Chambre,
Telfer) or increases (Bob, Klock, Tillie, Crooked) in a few of the
Extensive lakes. It is recognized, however, that the use of single-
summer samples for TP analyses may limit the ability to detect
trends since substantial biological TP (and nitrogen) utilization
may already have occurred at the time of sampling. Future, more

Fig. 3. Relationships of lakewater SO4 (a), Ni (b) Cu (c), and Al (d)
(total concentrations for metals) with distance from the Sudbury
smelters, in 2015, for the Extensive and Intensive monitoring lakes
(based on single summer samples). Three additional lakes not
shown in Fig. 1 (Bowland, Silver, Whitson) were added to the
dataset. Provincial Water Quality Objectives (PWQO, MOEE 1994) for
total Ni and Cu are shown. The PWQO for Al in such dilute lakes is
based on inorganic Al, which has not been measured. For
comparison to the Sudbury lakes, the range in SO4 concentrations
in eight Dorset, Ontario, lakes in July 2015 is also shown in panel a
(horizontal dashed lines).
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rigourous assessment of trends in nutrients, considering lakes
with more frequently collected seasonal data such as the Intensive
lakes might be more revealing.

Atmospheric deposition of N in the Sudbury area is primarily
from long-range sources since the Sudbury smelters have never
been a large N source (Keller et al. 2003). Although nitrate (NO3)
can sometimes be an important factor in lake acidification, the
main driver of widespread recovery from aquatic acidification in
Europe and North America has been declines in sulphur deposi-
tion, although the relative importance of NO3 to acidification may
change with reduced sulphur deposition (Garmo et al. 2014). The
dominant trend in the Extensive lakes has been a decline in NO3

concentrations (28 lakes) with no trend observed in 14 lakes. This
generally agrees with other North American and European ob-
servations indicating either declines or no change in surface
water NO3 concentrations in recent decades (Garmo et al. 2014;
Vuorenmaa et al. 2018).

Biological changes with recovery

Algae
The richness and community composition of phytoplankton

communities in the Sudbury area have generally changed rela-
tively rapidly (within decades) after chemical recovery. During
recovery, phytoplankton communities have typically increased in
species richness and shifted from dominance by acid-tolerant di-
noflagellates and chlorophytes to increased abundance of chryso-
phytes, diatoms, and cyanobacteria (Nicholls et al. 1992; Havas
et al. 1995; Findlay 2003; Graham et al. 2007; Winter et al. 2008;
Bergeron 2012).

Paleolimnological studies utilizing diatoms and scaled chryso-
phytes have been instrumental in revealing both the patterns of
acidification of Sudbury lakes and their recovery (Dixit et al. 1988,
1989, 1992a, 1992b, 1993, 1995, 1996; Smol et al. 1998). While evi-
dence of recovery was widely observed, changes were not always
towards inferred background conditions. In Sudbury-area lakes
with residual metal contamination, communities of diatoms have
not begun to recover (Tropea et al. 2010). As well, even in lakes that
were not heavily metal contaminated, recovery trajectories do not
necessarily track towards pre-industrial diatom assemblages
(Sivarajah et al. 2016, 2017), likely because of climate warming
effects.

The benthic filamentous algae Zygogonium that often proliferated
along shorelines of very clear, acid lakes was observed to decline
dramatically with pH increases in Swan Lake (Fig. 1), giving way to
more diverse benthic algal communities (Vandermeulen et al. 1993).

Zooplankton
Recovery of zooplankton communities has been particularly

well studied in Sudbury-area lakes and elsewhere. There have
been two reviews examining patterns of zooplankton community
recovery from acidification (Keller and Yan 1998; Gray and Arnott
2009). Substantial zooplankton community recovery has often
been observed within decades of water quality improvements.
Typically, recovery included re-establishment of acid-sensitive
crustacean species including Daphnia mendotae, Epischura lacustris,
Skistodiaptomus oregonensis, Eubosmina longispina, and others, lead-
ing to increased species richness (Keller and Yan 1991; Keller et al.
1992b, 2002, 2007; Locke et al. 1994; Holt and Yan 2003). Among
rotifers, with increased pH the acid-tolerant Keratella taurocephela
typically declined and acid-sensitive species including Keratella
cochlearis, Polyarthra sp., and Conochilus sp. increased in importance
(MacIsaac et al. 1986; Keller et al. 1992c).

Dispersal does not seem to greatly constrain recovery in lake-
rich regions where there are many colonist sources (Watson et al.
1999; Pollard et al. 2003; Keller et al. 2007; Audet et al. 2013; Yan
et al. 2016). Dispersal may, however, be a more important factor
affecting recovery in lakes that are isolated from colonist sources

by distance and (or) elevation (Keller and Yan 1998; Gray and
Arnott 2009, 2011). Although most zooplankton species (both ro-
tifers and crustaceans) seem to re-establish comparatively quickly
(MacIsaac et al. 1986; Keller et al. 1992c, 2002; Havas et al. 1995),
some species including hypolimnetic forms (Daphnia longiremis,
Cyclops scutifer), and the so called “glacial opportunists” including
Senecella calanoides, Limnocalanus macrurus, Leptodiaptomus sicilis,
and Diaptomus ashlandi appear to be much less able to disperse
between waterbodies (Keller and Yan 1998; Gray and Arnott 2009).

Improved water quality does not guarantee zooplankton com-
munity recovery even if dispersal is not limiting, since “biological
resistance” (sensu Keller and Yan 1998) as well as chemical factors
can be important in recovery processes (Keller and Yan 1998; Yan
et al. 2003; Gray et al. 2012). Established acid-tolerant zooplankton
communities may resist invasions by acid-sensitive species, delay-
ing community recovery (Binks et al. 2005; Derry and Arnott
2007). In lakes where planktivorous fish were eliminated by acid-
ification, zooplankton community structure can be controlled by
invertebrate predators such as Chaoborus (Yan et al. 1991; Keller
et al. 2002; MacPhee et al. 2011) and water beetles (Arnott et al.
2006) that expand in the absence of fish. In such cases the reintro-
duction of planktivorous fish is required to re-establish a more typi-
cal vertebrate-based predation system. However, in the absence of
piscivores, predation by abundant planktivorous fish such as small
yellow perch (Perca flavescens) can itself be a constraint to zooplank-
ton recovery (Keller and Yan 1998; Yan et al. 2004; Webster et al.
2013). Ultimately the development of typical zooplankton communi-
ties will likely depend on the re-establishment of diverse fish com-
munities containing both planktivores and piscivores (Valois et al.
2010, 2011; Webster et al. 2013).

In the lakes closest to Sudbury, residual metal contamination is
also still a factor negatively affecting zooplankton communities
(Yan et al 2004; Valois et al. 2011; Labaj et al. 2015; Taylor et al.
2016b) as it has been for many decades (Yan et al. 1996b). Interest-
ingly, in urban Sudbury lakes with Ca and Na levels elevated
because of anthropogenic activities, the sensitivity of Daphnia to
metals is considerably reduced (Celis-Salgado et al. 2016) in com-
parison with lake waters without elevated Ca and Na.

Benthic macroinvertebrates
There are many examples of at least partial recovery of benthic

macroinvertebrate communities in Sudbury-area lakes after re-
ductions in acidity, including soft sediment littoral and profundal
areas (Gunn and Keller 1990; Griffiths and Keller 1992; Reasbeck
1997; Babin-Fenske et al. 2012) and rocky near-shore habitats
(Gunn and Keller 1990; Snucins 2003). Relatively rapid recovery of
benthic macroinvertebrate communities is not surprising given
the relative mobility of many species, especially the winged stages of
insects. However, there are some macroinvertebrates (e.g., snails,
clams, amphipods, crayfish) with more limited dispersal abilities.
Natural re-establishment of such species may be a very slow pro-
cess unless there are residual populations persisting in refuges
within a lake or its watershed. Dispersal, if slow, does however
occur for nonmobile species by passive means including transport
by humans and wildlife (Kappes and Haase 2012). Snails (Gastropo-
da: Fossaria exigua, Heliosoma anceps, and Physella sp.) and amphi-
pods (Hyalella azteca) were observed to colonize a small, newly
created Sudbury-area lake within 2 years, with waterfowl being
the suspected vector of introductions (Watson et al. 1999). Little is
known about aquatic macrophytes in Sudbury lakes; however, if
macrophyte abundance increases in recovering lakes then posi-
tive responses in benthic macroinvertebrate communities will
likely follow. The abundance of the amphipod, H. azteca, is posi-
tively associated with the extent of littoral macrophyte cover in a
number of Sudbury lakes (Kielstra et al. 2017).

The continuing low species richness of benthic macroinvertebrate
communities in some lakes near Sudbury is related to residual metal
contamination of waters and sediments, which continues to affect

Keller et al. 7
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biological communities in the lakes closest to Sudbury where metal
deposition was highest (Reasbeck 1997; Borgmann et al. 1998;
Borgmann 2003; Wesolek et al. 2010; Szkokan-Emilson et al. 2010;
Luek et al. 2013, 2015). Benthic macroinvertebrate communities in
these lakes are characterized by absence or scarcity of taxa such as
decapoda, mollusca, ephemeroptera, and amphipoda, and an abun-
dance of Chironomidae. The scarcity of large grazers such as amphi-
pods and crayfish may lead to extensive periphyton accumulations
(Heneberry 1997) that can affect the recovery of other invertebrates.

In the mid-1990s sediment concentrations of Ni and Cu still ex-
ceeded, often greatly, Ontario Sediment Quality Guidelines for the
protection of aquatic life (75 and 110 �g g−1 for Ni and Cu, respectively
(MOEE 1993)) out to �50 km from Sudbury (Keller et al. 2004). Al-
though metal concentrations in surface sediments are generally de-
clining (Borgmann et al. 1998; Tropea et al. 2010), very high levels
persist in some Sudbury lakes, with concentrations of Ni and Cu
exceeding, sometimes far exceeding, 1000 �g g−1 (Tropea et al. 2010).
Burial of contaminated sediment with clean sediment may be a very
slow process (Belzile and Morris 1995).

Additionally, even after reductions in chemical stress from con-
taminated water and sediments, in lakes with scarce or absent
piscivores intensive predation by fish species such as yellow perch
(P. flavescens) can negatively affect the recovery of macroinverte-
brate communities (Wesolek et al. 2010; Luek et al. 2010, 2013,
2015). In lakes where food webs have been badly altered by acidi-
fication, the re-establishment of typical fish communities may be
required to achieve recovery of benthic macroinvertebrate popu-
lations.

Fish
In a few cases such as Whitepine (Fig. 1) and Nelson lakes, small

remnant populations of lake trout (Salvelinus namaycush) have in-
creased dramatically in response to decreased lake acidity (Gunn
and Keller 1990; Casselman and Gunn 1992). However, when fish
have been extirpated, re-colonization is not likely unless there are
direct connections between affected lakes and other lakes that
contain fish source populations. Intentional or unintentional in-
troductions by humans are a major cause of fish species expan-
sions.

Intentional stocking of sport fish including lake trout, aurora
trout (Salvelinus fontinalis), and smallmouth bass (Micropterus dolomieu)
for experimental or fisheries management purposes has been
successful in formerly acidified lakes (Gunn et al. 1988; Gunn
and Keller 1990; Snucins and Gunn 2003; Luek et al. 2010). Re-
establishment of acid-sensitive piscivores (lake trout, smallmouth
bass) in formerly acidified lakes has resulted in rapid and substan-
tial declines in very abundant acid-tolerant yellow perch popula-
tions (Gunn et al 1988, 1990; Gunn and Keller 1990; Casselman and
Gunn 1992; Luek et al. 2010) and likely contributed to changes
in populations of zooplankton and benthic macroinvertebrates
through relaxed fish predation (Gunn and Keller 1990; Keller et al.
1990b, 1992c; Griffiths and Keller 1992).

Lake and watershed liming
In contrast to other acid-affected areas of the world, particularly

Scandinavia (Olem et al. 1991; Henrikson and Brodin 1995), large-
scale lake liming programmes were not implemented in Ontario
because with an estimated 19 000 acidified lakes (Neary et al. 1990)
liming as a lake management strategy was not considered to be
economically or logistically feasible. As well, since liming is only a
temporary interim step, not a solution, for the lake acidification
problem, the focus in Ontario was on achieving effective controls
on acid-causing emissions (Keller 2009). A small number of whole-
lake liming activities were, however, conducted in Ontario to ex-
perimentally determine the responses of lake communities to
reduced acidity (Dillon et al. 1979; Dodge et al. 1988; Keller et al.
1990c; Yan et al. 1995) or to assist with the restoration of a unique

strain of brook trout, the aurora trout, which had been eliminated
from its natural lakes by acidification (Snucins et al. 1995a, 1995b).

In total, eight lakes were limed in Ontario, with seven in the
Sudbury area. Lake liming activities were successful in increasing
lake pH (Dillon et al 1979; Molot et al. 1990a; Yan et al. 1995) and in
also substantially reducing lake water metal concentrations in the
highly metal-contaminated lakes closest to Sudbury, although
metal concentrations remained high (Dillon et al. 1979). Positive
responses to liming were observed in many groups of organ-
isms, including stocked lake trout (Gunn et al. 1990), phyto-
plankton (Molot et al. 1990b), littoral algae (Jackson et al. 1990),
zooplankton (Keller et al. 1992c), and benthic macroinverte-
brates (Keller et al. 1990b; Carbone et al. 1998). However, in
most of the limed lakes re-acidification occurred relatively
quickly, providing only limited opportunities to examine bio-
logical responses to neutralization.

In the limed lakes within the City of Greater Sudbury (Middle,
Hannah, Lohi; Fig. 1) long-term re-acidification did not occur be-
cause of terrestrial reclamation programmes that included liming
of their watersheds (Lautenbach et al. 1995; Winterhalder 1996),
an unplanned, but very positive outcome. Watershed liming as an
aquatic remediation measure has had limited application in On-
tario, although it has been widely applied to assist terrestrial rec-
lamation efforts on the metal-contaminated soils of the Sudbury
area. Watershed liming experiments demonstrate that it is a use-
ful practice to improve drainage water quality (Gunn et al. 2001)
with benefits for littoral lake biota (Gunn et al. 2016).

Watershed effects on recovery
Lakes and rivers are intimately linked to their watersheds and

their chemistry can largely be viewed as a watershed effect. Thus,
Sudbury-area watersheds affected by atmospheric deposition of
sulphur and metals may negatively affect downstream chemistry,
potentially for very long periods, when there has been substantial
contaminant storage in watershed soils and wetlands (Nriagu
et al. 1998; Keller et al. 1992a; Yan et al. 1996a; Szkokan-Emilson
et al. 2013, 2014, 2017). Wet–dry cycles effectively oxidize and
liberate quantities of acid and metals from storage under anoxic
conditions in wetlands, saturated soils, and lake sediments.
Drought-induced increases in the acidity and metal concentra-
tions of streams and lakes can negatively affect biota including
zooplankton (Arnott et al. 2001; Arnott and Yan 2002) and littoral
macroinvertebrates (Szkokan-Emilson et al. 2013, 2017). We do
not know how long such events may continue as an unfortu-
nate legacy of the historically high contaminant deposition
near Sudbury, although it has been suggested that effects from
metal-contaminated watersheds may persist for over a thousand
years (Nriagu et al. 1998). Watershed-scale loss of soil ions, includ-
ing Ca, also occurred as a result of acid deposition. Naturally thin
and ion poor catchment soils in Precambrian Shield regions,
along with slow mineral weathering rates and further loss of ions
through vegetation removal with land-use changes combine to
result in ongoing loss of Ca and reduced inputs to lakes, that likely
will continue for decades to come (Watmough and Aherne 2008).
Time and continuing monitoring will tell.

Historically, clear-cut logging and SO2 fumigations from early
metal smelting activities damaged vegetation in a large area sur-
rounding Sudbury, leading to large-scale erosion (Winterhalder
1995a). Terrestrial damage left a large (17 000 ha) area barren of
vegetation with severely eroded soils, within a 72 000 ha semi-
barren area, around the Sudbury smelters (Winterhalder 1995a).
However, with time, some natural revegetation has occurred
(Winterhalder 1995b,1995c) with reduced smelter emissions (Potvin
and Negusanti 1995), and large-scale land restoration programmes
including soil liming and tree planting have dramatically re-
greened the Sudbury-area landscape (Lautenbach et al. 1995;
Winterhalder 1996). In areas where watershed soils and vegeta-
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tion were historically disturbed, terrestrial recovery may be a very
important element assisting aquatic recovery. Increased organic
matter export by streams from reforested areas is expected to
have direct benefits to benthic invertebrates and ultimately to
fish growth (Wesolek et al. 2010; Szkokan-Emilson et al. 2011;
Tanentzap et al. 2014). Watershed re-forestation can have physical
as well as chemical effects on downstream lakes. Reductions
in wind speed related to a growing forest around Sudbury
(Tanentzap et al. 2007) have been related to reduced lake mixing
and increased cold water habitat (Tanentzap et al. 2008).

Shifting reference conditions
The fundamental nature of aquatic ecosystems in Ontario is

changing in the face of multiple anthropogenic stressors includ-
ing climate warming, Ca decline, and invasive species. Even in
nonacidified Ontario lakes, chemistry and populations of zoo-
plankton (Jeziorski et al. 2008; Yan et al. 2008; Palmer et al. 2011,
2013; Palmer and Yan 2013) and phytoplankton (Paterson et al.
2008) have changed in recent decades. Variability in observed
temporal changes in lake plankton communities suggests that
there can be strong heterogeneity in lake responses within and
across regions due to influences such as climate change (Arnott
et al. 2003b). Paleolimnological studies suggest that cladoceran
and diatom communities in some recovering lakes are not mov-
ing back to their historical conditions, but rather they are moving
to new states, likely because of climate warming (Labaj et al. 2016;
Sivarajah et al. 2016, 2017).

Exotic invasive species are not yet widely distributed in in-
land lakes in Ontario; however, when present the exotic
invader Bythotrephes has had dramatic effects on resident zoo-
plankton populations (Yan et al. 2008). Future expansions of this
invader, likely with severe consequences for resident zooplank-
ton, including reduced species richness and altered community
structure (Strecker and Arnott 2005: Strecker et al. 2006), appear
to be inevitable (Pagnucco et al. 2015). Range expansion of native
species as well as exotic species can have dramatic effects on aquatic
ecosystems. The northward expansion of bass (M. dolomieu, Microp-
terus salmoides, Ambloplites rupestris) with a warming climate has the
potential to significantly alter food webs in northern Ontario
lakes through heavy predation by bass on littoral food resources
(Vander Zanden et al. 2004; Alofs and Jackson 2015). Recovering
lakes without established fish communities and lacking top pred-
ators may be particularly at risk of invasion (Alofs and Jackson
2014). Climate change is also predicted to threaten the re-
establishment and persistence of many native cool- and cold-
water fish species, further increasing the invasibility of northern
lakes (Edwards et al. 2016; Van Zuiden et al. 2016).

Assessments of recovery must therefore consider this changing
baseline, since the use of outdated reference data sets can substan-
tially alter conclusions (Palmer et al. 2013). The choice of recovery
metrics, and the use of multiple metrics is also important since
different metrics vary in their detection sensitivity (Yan et al.
1996c) and can also lead to different conclusions (Keller et al. 2002;
Gray and Arnott 2009). While much biological recovery has been
observed in lakes near Sudbury, current assessments of the degree
of recovery for various groups of biota are needed to gauge the
actual extent and completeness of community recovery to date.
Such assessments will need to be done against a background of
changing reference conditions.

Summary
Once viewed as an international icon of environmental devas-

tation, the Sudbury area now provides one of the best examples in
the world of successful environmental restoration and recovery.
Sudbury-area studies have given a powerful demonstration of the
environmental benefits of air pollution controls. Long-term mon-
itoring of lakes in the region has shown remarkable chemical

improvements after very large reductions of sulphur and metal
emissions from area smelters and reduced acid deposition from
long-range sources. Because of the large, relatively early regional
sulphur emission reductions, lakes in the Sudbury area allowed
documentation of the lake recovery process before the implemen-
tation of substantial emission controls in other areas. This evi-
dence of aquatic ecosystem recovery was crucial in establishing
the necessity of sulphur emission controls during the interna-
tional debates about the effects of acid deposition and the need
for action. Results from Sudbury-area lakes have also led to the
development of a number of conceptual models of chemical and
biological recovery processes (Keller and Yan 1998; Yan et al. 2003;
Keller et al. 2007) that continue to guide international lake recov-
ery studies. Although the major contribution of Sudbury lake
studies has been to acidification research, these long-term data
series, especially for zooplankton, have also had substantial addi-
tional value for limnology in general. For example, Sudbury lake-
monitoring data have helped advance the understanding of broad
ecological issues related to relationships of aquatic community
change with environmental change (Helmus et al. 2010; Shurin
et al. 2010; Lamothe et al. 2018) and have allowed real-world vali-
dation of metal toxicity models for aquatic invertebrates (Khan
et al. 2012; Stockdale et al. 2014; Balistrieri et al. 2015).

The future of Sudbury lakes looks promising. Biological recov-
ery, including many groups of organisms, has followed chemical
recovery. However, in some lakes recovery from acidification and
metal contamination is not yet complete, and recovery processes
are complicated by interactions with other large-scale environ-
mental stressors like climate change and Ca decline. Lake commu-
nities may not return exactly to their pre-acidification state
because of the influence of such large-scale stressors. In se-
verely damaged lakes where food webs were greatly altered,
reintroduction of key fish species may be necessary to achieve
recovery of invertebrates to more normal communities. In the
most severely affected lakes, with watersheds that were also
badly damaged, aquatic recovery will likely be closely linked to
terrestrial recovery.

Future directions
Foremost, continued monitoring of Sudbury-area lakes will be

essential to track future changes and further develop our under-
standing of aquatic recovery processes amidst a variety of concur-
rent local and regional environmental changes. Only by looking
will we be able to see and understand the changes that are hap-
pening in lakes. Studies in the Sudbury area have provided a very
clear demonstration of the necessity of comprehensive lake-
monitoring programmes to evaluate the effectiveness of pollution
control measures and also to reveal the effects of other new envi-
ronmental stressors affecting aquatic ecosystems.

Monitoring programmes only have their greatest value when the
necessary resources are committed toward timely interpretation and
reporting. To improve our current understanding of biological recov-
ery, increased effort needs to be devoted to updating analyses of
temporal patterns in the long-term zooplankton and phytoplankton
data sets collected by the Sudbury lake-monitoring programmes.
Long-term temporal patterns in thermal and oxygen regimes in
these lakes also need to be examined given the likely influence on
thermal habitats and oxygen distribution of large-scale changes such
as climate warming and browning. As well, various past studies of
fish benthic macroinvertebrates, aquatic macrophytes and plank-
tonic Chaoborus in Sudbury-area lakes can now provide a baseline
from which the extent of recent community change can be assessed.
Future work should include repeat sampling of lakes with previous
data and assessments of temporal changes and current status.

Many questions remain about the future of Sudbury-area lakes
that need to be addressed through ongoing research. We need to
better understand the linkages between land and water since
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these interactions will affect future lake recovery. Key aspects that
need to be further examined include determining the current
magnitude of sulphur and metal storage in watersheds and
estimation of the timeframes that significant metal and acid in-
puts (long-term and episodic) to lakes are likely to continue.
Estimation of current sediment recovery rates from metal con-
tamination would also be valuable since severe sediment metal
contamination persists in some lakes, affecting benthic macroin-
vertebrates. The extent to which increasing organic matter from
recovering terrestrial landscapes affects lake recovery also needs
to be further investigated. The above studies would ideally in-
clude detailed process-oriented investigations, including field sur-
veys, paleolimnological studies, and experiments on key lakes
and larger-scale empirical assessments of relationships between
lake recovery patterns and catchment characteristics across a
broad lake set using remote sensing and GIS tools. The above
studies would greatly enhance the ongoing Sudbury lake-
monitoring programmes and lead to a much better understand-
ing of the patterns and processes of lake recovery in our multiple
stressor world. This knowledge would have great benefits, inform-
ing future lake management efforts in the Sudbury area and other
areas of the world affected by acid deposition.
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Appendix
Appendix Figs. A1 to A4 are provided on the following pages.
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Fig. A1. Time series for pH for 42 Extensive monitoring lakes sampled once annually in the summer epilimnion, 1981–2015.

Fig. A2. Time series for SO4 for 42 Extensive monitoring lakes sampled once annually in the summer epilimnion, 1981–2015.
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Fig. A3. Time series for Ca for 42 Extensive monitoring lakes sampled once annually in the summer epilimnion, 1981–2015.

Fig. A4. Time series for dissolved organic carbon (DOC) for 42 Extensive monitoring lakes sampled once annually in the summer epilimnion,
1981–2015.
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